4.2 Limit of a Vector Function

Definition. A vector function $\vec{f}(t)$ is said to tend to a vector limit \vec{l} as $t \rightarrow a$, if corresponding to any positive number ε that we may choose, no matter how small, there exists a positive number δ such that $|\vec{f}(t) - \vec{l}| < \varepsilon$ for $|t-a| \leq \delta$.

This is expressed by writing

$$\lim_{t\to a} \overrightarrow{f(t)} = \overrightarrow{l}.$$

We also say that $\vec{f}(t)$ tends to \vec{l} as t tends to a; and express this by $\vec{f}(t) \rightarrow \vec{l}$ as $t \rightarrow a$.

4.3 Fundamental Theorems on Limits

If $\vec{f}(t)$, $\vec{g}(t)$ be vector functions and $\varphi(t)$ a scalar function of t such that as $t \rightarrow a$

$$\overrightarrow{f}(t) \rightarrow \overrightarrow{l}, \ \overrightarrow{g}(t) \rightarrow \overrightarrow{m} \text{ and } \phi(t) \rightarrow n,$$
then (i) $\overrightarrow{f}(t) + \overrightarrow{g}(t) \rightarrow \overrightarrow{l} + \overrightarrow{m}, \text{ as } t \rightarrow a,$
(ii) $\overrightarrow{f}(t) - \overrightarrow{g}(t) \rightarrow \overrightarrow{l} - \overrightarrow{m}, \text{ as } t \rightarrow a,$
(iii) $\phi(t) \overrightarrow{f}(t) \rightarrow n \overrightarrow{l}, \text{ as } t \rightarrow a,$
(iv) $\overrightarrow{f}(t) \cdot \overrightarrow{g}(t) \rightarrow \overrightarrow{l} \cdot \overrightarrow{m}, \text{ as } t \rightarrow a,$
(v) $\overrightarrow{f}(t) \times \overrightarrow{g}(t) \rightarrow \overrightarrow{l} \times \overrightarrow{m}, \text{ as } t \rightarrow a.$

Proof. Choose a positive number ϵ , no matter how small.

We have
$$\lim_{t \to a} \overrightarrow{f}(t) = \overrightarrow{l}$$
 and $\lim_{t \to a} \overrightarrow{g}(t) = \overrightarrow{m}$.

By the definition of limit we can choose δ_1 and δ_2 so that

$$|\overrightarrow{f}(t) - \overrightarrow{l}| < \frac{1}{2}\varepsilon \text{ for } |t-a| \leq \delta_1$$

$$|\overrightarrow{g}(t) - \overrightarrow{m}| < \frac{1}{2}\varepsilon \text{ for } |t-a| \leq \delta_2.$$

and

If we denote the smaller of δ_1 , δ_2 by δ , then each of the above two inequalities will hold for $|t-a| \leq \delta$,

that is, $|\vec{f}(t) - \vec{l}| < \frac{1}{2}\varepsilon$ and $|\vec{g}(t) - \vec{m}| < \frac{1}{2}\varepsilon$ for $|t-a| < \delta$. (i) We have $|\vec{f}(t) + \vec{g}(t) - (\vec{l} + \vec{m})| < |\vec{f}(t) - \vec{l}| + |\vec{g}(t) - \vec{m}|$.

Hence, when $|t-a| \leq \delta$,

 $|\overrightarrow{f(t)} + \overrightarrow{g(t)} - (\overrightarrow{l+m})| < \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon.$ Hence, by the definition of limit.

$$\vec{f}(t) + \vec{g}(t) \rightarrow \vec{l} + \vec{m}$$
, as $t \rightarrow a$.

We leave the proofs of the remaining theorems as an exercise for the reader.

4.4 Continuity of a Vector Function at a Point

Definition. The vector function $\overrightarrow{f}(t)$, defined over the interval *I*, is said to be continuous at $t = a \in I$ if $\lim_{t \to a} \overrightarrow{f}(t) = \overrightarrow{f}(a)$.

This definition can be put in the distance form, that is, modulus form, as follows—

A vector function $\overrightarrow{f}(t)$, defined over the interval *I*, is said to be continuous at $t = a\varepsilon I$, if given $\varepsilon > 0$ there exists a positive number $\delta(a, \varepsilon)$ such that $|\overrightarrow{f}(t) - \overrightarrow{f}(a)| < \varepsilon$ for $|t-a| < \delta$.

A vector function, $\overrightarrow{f}(t)$ which is not continuous at t=a, is called discontinuous at t=a.

4.5 Continuity of a Vector Function in an interval

A vector function $\overrightarrow{f}(t)$ defined over the interval I is said to be continuous in the interval $[a, b] \subseteq I$ if $\overrightarrow{f}(t)$ is continuous for all values of t such that $a \leq t \leq b$.

4.6 Properties of Continuous Vector Functions

Theorem. If $\overrightarrow{f}(t)$ and $\overrightarrow{\phi}(t)$ are continuous at t = a, then (i) $\overrightarrow{f}(t) + \overrightarrow{\phi}(t)$ is continuous at t = a; (ii) $\overrightarrow{f}(t) - \overrightarrow{\phi}(t)$ is continuous at t = a;

(iii) $\vec{f}(t)\psi(t)$ is continuous at t=a, where $\psi(t)$, a scalar function of t, is continuous at t=a;

(iv) $\frac{\vec{f}(t)}{\psi(t)}$ is continuous at t = a, where $\psi(t)$, a scalar function of

t, is continuous at t = a and $\psi(t) \neq 0$ for any value of t in the domain of definition;

(v) $\overrightarrow{f}(t)$. $\overrightarrow{\phi}(t)$ is continuous at t = a; (vi) $\overrightarrow{f}(t) \times \overrightarrow{\phi}(t)$ is continuous at t = a.

Proof. As $\vec{f}(t)$ and $\vec{\phi}(t)$ are continuous Rt t = a, therefore, by the definition of continuity,

$$\lim_{t \to a} \overrightarrow{f}(t) = \overrightarrow{f}(a) \text{ and } \lim_{t \to a} \overrightarrow{\phi}(t) = \overrightarrow{\phi}(a)$$
(i) Let $\overrightarrow{F}(t) = \overrightarrow{f}(t) + \overrightarrow{\phi}(t)$.
Then $\overrightarrow{F}(c) = \overrightarrow{f}(c) + \overrightarrow{\phi}(c)$.

Then $F(a) = f(a) + \varphi(a)$. Now $\lim_{t \to a} \overrightarrow{F}(t) = \lim_{t \to a} [\overrightarrow{f}(t) + \overrightarrow{\varphi}(t)]$ $= \lim_{t \to a} \overrightarrow{f}(t) + \lim_{t \to a} \overrightarrow{\varphi}(t),$

$$=\overrightarrow{f}(a)+\overrightarrow{\phi}(a)=\overrightarrow{F}(a).$$

Hence, by the definition of continuity,

$$\overrightarrow{F}(t)$$
, that is, $\overrightarrow{f}(t) + \overrightarrow{\phi}(t)$

is continuous at t = a.

We leave the proofs of the other theorems as an exercise for the reader.

4.7 Differentiability of a Vector Function at a point

Definition. A vector function $\overrightarrow{f}(t)$ defined in the interval I is said to be differentiable at $t = a \in I$ if

$$\lim_{t \to a} \frac{\vec{f}(t) - \vec{f}(a)}{t - a} \text{ exists, in other words if}$$
$$\lim_{\delta a \to 0} \frac{\vec{f}(a + \delta a) - \vec{f}(a)}{\delta a} \text{ exists.}$$

The value of the limit is called the derivative (differential co-efficient) of $\vec{f}(t)$ at t=a and it is denoted by

$$\frac{d\vec{f}}{dt}$$
 or $\vec{f}'(t)$.

Clearly this is a vector quantity.

Thus

Now

$$\frac{d\vec{f}}{dt} = \lim_{\delta t \to 0} \frac{\vec{f}(t+\delta t) - \vec{f}(t)}{\delta t}.$$

Note. Obviously, by definition $\begin{bmatrix} d & \overrightarrow{a} \\ dt & = 0 \end{bmatrix}$ if \overrightarrow{a} is a constant vector.

4.8 **Theorem**. If a vector function is differentiable finitely at a point, then it must be continuous at that point.

Proof. Let the vector function $\vec{f}(t)$ be differentiable finitely at t=a.

Then, by the definition of differentiability of a vector function at a point,

$$\lim_{h \to 0} \frac{\overrightarrow{f}(a+h) - \overrightarrow{f}(a)}{h} = \overrightarrow{f}'(a), \text{ which is finite}$$
$$\lim_{t \to a} \overrightarrow{f}(t) = \lim_{h \to 0} \overrightarrow{f}(a+h)$$
$$= \lim_{h \to 0} [\overrightarrow{f}(a+h) - \overrightarrow{f}(a) + \overrightarrow{f}(a)]$$

00

$$= \lim_{h \to 0} \left[\frac{\vec{f}(a+h) - \vec{f}(a)}{h} \cdot h + \vec{f}(a) \right]$$
$$= \lim_{h \to 0} \frac{\vec{f}(a+h) - \vec{f}(a)}{h} \cdot \lim_{h \to 0} h + \vec{f}(a)$$
$$= \vec{f}'(a) \cdot 0 + \vec{f}(a) = \vec{f}(a).$$

Hence $\overrightarrow{f}(t)$ is continuous at t = a.

Note. The converse of this theorem is not necessarily true.

4.9 Geometrical interpretation of the Derivative

Let us consider a point P on a curve $\overrightarrow{r} = \overrightarrow{f}(t)$, with position vector \overrightarrow{r} given by a parameter t. Intuitively we see that a change in the value of t causes a change in the value of \overrightarrow{r} . Let Q be the point $\overrightarrow{r} + \delta \overrightarrow{r}$ on the curve when t changes to $t + \delta t$.

Now in the limit as $\delta t \rightarrow 0$.

 $Q \rightarrow P$ and $\overrightarrow{PQ} \rightarrow$ the tangent \overrightarrow{PT} at P.

Hence $\frac{d\vec{r}}{dt}$ is a vector parallel to the tangent at P in the sense of t increasing.

Note. (i) If s be the arc length then $|\vec{\delta r}| \rightarrow \delta s$ and so $\frac{d\vec{r}}{ds}$ becomes the unit tangent to the curve $\vec{r} = \vec{f}(s)$.

(ii) $\frac{d\vec{r}}{dt}$ or $\vec{f'}(t)$ is called the first derivative of \vec{r} provided $\vec{r} = \vec{f}(t)$

is a derivable function.

If the first derivative is also derivable then its derivative is called the second derivative of \vec{r} and is denoted by

$$\frac{d^{2}\vec{r}}{dt^{2}} \text{ or } \vec{f}'(t),$$

Similarly the third derivative is $\frac{d^3 \vec{r}}{dt^3}$ or $\vec{f''}(t)$ and so on.

In general the *n*th derivative is $\frac{d^n \vec{r}}{dt^n}$ or $\vec{f}^n(t)$.

4.10 Physical interpretation of the first and the second Derivatives.

Let the vector equation of the curve be $\vec{r} = \vec{f}(t)$.

Let us consider a point P on the curve, with position vector r given by a parameter t.

Intuitively we see that a change in the value of t causes a change in the value of \overrightarrow{r} . Let Q be the point $\overrightarrow{r} + \delta \overrightarrow{r}$ on the curve when tchanges to $t + \delta t$.

Then $\delta \vec{r}$ is the displacement of the point P in time δt , when the parameter t denotes the time. $\frac{\delta \vec{r}}{\delta t}$ is called the average rate of change of \vec{r} with t, that is, the average velocity during the interval.

And
$$\frac{d\vec{r}}{dt} = \lim_{\delta t \to 0} \frac{\delta\vec{r}}{\delta t} = \text{velocity } \vec{v}$$
.

Thus $\frac{d\vec{r}}{dt}$ is the velocity \vec{v} at P which is in the direction of the tangent of the path of the point.

Similarly, the acceleration \overrightarrow{a} at P is the rate of change of the

velocity \overrightarrow{v} and is given by

$$\vec{a} = \lim_{\delta t \to 0} \frac{\delta \vec{v}}{\delta t} = \frac{d \vec{v}}{dt} = \frac{d}{dt} (\vec{v}) = \frac{d}{dt} \left(\frac{d \vec{r}}{dt}\right) = \frac{d^3 \vec{r}}{dt^2}.$$

4.11 Differentiation of a Vector Function of a Scalar Function

Let $\vec{f}(t)$ be a vector function of the scalar variable t and t be a function of another scalar s.

Let δt be a small increment in t and $\delta \vec{f}$ and δs be the corresponding small increments in \vec{f} and s respectively.

Then, when $\delta t \rightarrow 0$, $\delta f \rightarrow 0$ and $\delta s \rightarrow 0$.

Now
$$\frac{\delta \vec{f}}{\delta s} = \frac{\delta \vec{f}}{\delta t} \cdot \frac{\delta t}{\delta s}$$
.

Taking the limits as $\delta t \rightarrow 0$ and consequently $\delta s \rightarrow 0$, we have

or
$$\frac{\lim_{\delta s \to 0} \frac{\delta \vec{f}}{\delta s} = \lim_{\delta t \to 0} \frac{\delta \vec{f}}{\delta t} \cdot \lim_{\delta s \to 0} \frac{\delta t}{\delta s}}{\frac{d \vec{f}}{d s}} = \frac{d \vec{f}}{d t} \cdot \frac{d t}{d s}.$$